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A B S T R A C T   

Buildings are one of the main consumers of energy in cities, which is why a lot of research has been generated 
around this problem. Especially, the buildings energy management systems must improve in the next years. 
Artificial intelligence techniques are playing and will play a fundamental role in these improvements. This work 
presents a systematic review of the literature on researches that have been done in recent years to improve 
energy management systems for smart building using artificial intelligence techniques. An originality of the work 
is that they are grouped according to the concept of “Autonomous Cycles of Data Analysis Tasks”, which defines 
that an autonomous management system requires specialized tasks, such as monitoring, analysis, and decision- 
making tasks for reaching objectives in the environment, like improve the energy efficiency. This organization of 
the work allows us to establish not only the positioning of the researches, but also, the visualization of the current 
challenges and opportunities in each domain. We have identified that many types of researches are in the domain 
of decision-making (a large majority on optimization and control tasks), and defined potential projects related to 
the development of autonomous cycles of data analysis tasks, feature engineering, or multi-agent systems, among 
others.   

1. Introduction 

The building sector causes almost 40% of the total non-renewable 
energy consumption, 40% of greenhouse-gas emissions, and 70% of 
the electricity use in industrialized countries [1]. Buildings consume 
more than transportation or industry sectors, and it is imputable mainly 
to heating/cooling, lighting, and electrical appliances. Additionally, the 
legislation in these countries stipulates that much of the consumed en
ergy by 2025 must come from renewable and CO2-free energy sources. 
This transition of the energy systems is leading to a strong investment in 
smart grid technologies to minimize the overall energy cost. Smart grid 
technologies can reduce energy consumption, increase the efficiency of 
the electricity network, and manage electricity generation from 
renewable technologies. However, the ways to make use of smart grid 
technologies to improve building energy efficiency are still an open 
issue. 

On the other hand, smart buildings are thought of as a dynamic 

“living” organism, where technology is used to bring the most of light 
dimmers and thermostats. In a smart building (academic, commercial, 
residential, etc.), hundreds of elements must be considered, including 
the Heating, Ventilation, and Air Conditioning (HVAC) system, plug 
loads from appliances and Information Technology (IT) devices, etc. One 
of the main elements of smart buildings is the Building Energy Man
agement Systems (BEMSs), which must seek energy efficiency and its 
integration with smart grid technologies. BEMS combines strategies to 
improve energy efficiency and conservation in a building. BEMS must 
implement key energy management tasks, such as monitoring of energy 
supply information, automated demand response, detecting of energy 
use anomalies, supervision of energy costs or automatic control. There 
are numerous studies about BEMSs and their subsystems. 

Then again, a set of new concepts are coming up today around smart 
grid technologies, such as microgrids, demand-side management (DSM), 
load scheduling strategies, peer-to-peer (P2P) electricity trading, energy 
storage services, energy hub, energy prosumers, renewable energy 
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resources (RES), etc. that make the functionality of the BEMS more 
complex. In this new context, the energy is intermittent, distributed, 
mobile and can be stored. For example, the growing trend of RES, 
characterized by its variability and intermittency, reduces the prediction 
capability of the generated energy. These attributes make more chal
lenging a BEMS because more flexibility and stability are needed to 
secure the normal operation in a building. 

BEMSs today do not implement data monitoring, processing, 
analyzing and controlling capabilities for this highly complex and 
changing scenario. Some aspects missed include, but are not limited to, 
adaptability, predictive modeling, multisensor fusion, dynamic optimi
zation or context-awareness. Thus, the Artificial Intelligence (AI) field 
brings new approaches for the development of smart BEMSs to build 
useful knowledge like occupancy behavior, fault or weather prediction, 
energy usage patterns, among others, to address occupant comfort while 
maximizing energy efficiency. 

AI techniques can be used for different tasks in a smart BEMS. For 
example, they can be used for modeling (e.g., with multi-agent systems), 
learning (e.g., with machine learning (ML) approaches), reasoning (e.g., 
with fuzzy systems), among others, which can be embedded in these 
environments. The motivation of this work is to know what has been 
done around this topic in the literature, organizing it from a holistic 
point of view from autonomic computing, to achieve efficient energy 
management. The main motivation of this paper is to provide a novel 
framework about the utilization of AI techniques for energy manage
ment in smart buildings, considering a recent AI-based concept like 
autonomous computation, to organize the information. The next two 
subsections of the introduction describe works similar to ours on sys
tematic literature review and present the contributions of this work. 

1.1. Previous review 

In the literature, some reviews are close to this work, linked to 
building energy optimization, smart grid, among other topics, but 
neither are recent, nor smart buildings specific, nor organized in the way 
proposed in this work, which is based on the concept of “Autonomous 
Cycles of Data Analysis Task”, also called ACODAT [2,3] (see section 2). 
Next, we comment on some of those works. 

In the context of Monitoring problems, Plageras et al. [4] published a 
survey on the Internet of Things (IoT), Big Data, Cloud Computing, and 
other topics in the field of sensor data collection & management in smart 
buildings. Zhou et al. [5] present a study of Big Data-driven smart energy 
management. They first discuss the sources and characteristics of big 
data from energy, and then, take the smart grid as their research back
ground, providing a systematic review of Big Data analytics for smart 
energy management. Atnonopoulus et al. [6] provide an overview of 
AI-based EMS works on methods utilized for energy demand-side 
response (DR) applications. They classify the papers with regards to 
both AI/ML algorithms used and the energy application area. Kumari 
et al. [7] present a survey on blockchain (BC) and AI-based energy 
management systems. They review several existing AI algorithms in P2P 
energy trading, integrating BC and AI in the EMS. Particularly, they 
analyze works where AI-based techniques support various services, such 
as energy load prediction, classification of the consumer, where the BC 
provides data immutability and a trust mechanism for secure energy 
management. Molina-Solana et al. [8] review how data science is used in 
the most difficult problems in the field of energy management for smart 
buildings. 

In Fault Detection and Diagnosis studies, Verma et al. [9] discuss the 
state-of-the-art in intelligent features and IoT infrastructure required for 
smart building. They focus on papers about virtual sensing IoT in
frastructures, which enable the clients to use in detection tasks. Lazarova 
et al. [10] review the methods that can be utilized for the discovery and 
diagnosis of faults in buildings, in order to identify the existing gaps. In 
addition, they review and analyze the types of faults that could occur. 
With respect to Intelligent Control systems, Hameed et al. [11] present a 

state-of-the-art in intelligent control systems for energy and comfort 
management in smart buildings. They consider different aspects, like 
control systems, intelligent computational methods, and comfort pa
rameters, among other aspects. The survey presented by Schmidt et al. 
[12] presents several recent works about predictive control strategies for 
the daily operation of buildings. Chinchero et al. [13] present a review 
about control methodologies for BEMS, specifically studying the impact 
of LED Lighting Systems in smart buildings. 

In the Scheduling problems, Sadeghi et al. [14] present a 
state-of-the-art of existing research works focusing on the planning 
problems of energy systems in energy hubs. Finally, about EMSs, the 
review presented by Silva, Khan & Han [15] analyses recent literature 
reports on peak load shaving and demand response for EMS, while 
Hernández et al. [16] present a review of management strategies for 
BEMSs for improving energy efficiency. They review the existing studies 
for building types, building subsystems, and used techniques. Finally, 
the work of Himeur et al. [17] presents a survey about energy efficiency 
recommendation systems in buildings, and a taxonomy of these systems 
based on the nature of the recommender engine, its goal, the computing 
platforms, the evaluation metrics and incentive measures. 

Fig. 1 summarizes the areas covered in the articles that present re
views of the literature in the field of EMSs for smart building. Most of the 
works make reviews of problems related to decision-making tasks (e.g., 
scheduling, control, optimization), and in particular, of control prob
lems [11–13]. Also, in the analysis tasks, several reviews have been 
made on the use of AI techniques in them [5,7,8], as well as general 
reviews on what has been done technologically on EMSs [15–17]. On the 
other hand, in the case of decision-making tasks, there are reviews for 
specific problems (e.g., control problems), but also, there are reviews 
related to the approach used to solve these problems (e.g., multi-agent 
systems [13]). Finally, some reviews review specific problems but 
from a particular resolution approach, as is the case of the work of 
Chinchero and Alonso [13]. 

In conclusion, Fig. 1 shows that some works are very oriented to 
specific problems (e.g., control, diagnosis), while others consider spe
cific components of an EMS (e.g., LED lighting systems). Additionally, 
those that refer to the use of AI in EMSs, besides being for specific 
problems, do not propose a methodology to analyze previous works in 
terms of their contributions in monitoring, analysis, or decision-making 
processes. These areas are covered in this review. This is the main 
contribution of this article, which allows identifying the potentiality of 
the autonomous cycle concept in EMS. It is also important to highlight, 
there are no works that review previous works in reinforcement learning 
(RL) for EMSs or autonomous EMSs, also covered by this revision. Thus, 
the review of the literature carried out by this article is made from a 
holistic vision considered in the designs of autonomous cycles inte
grating AI techniques. 

1.2. Scope and contributions 

The present survey paper aims to put together different approaches, 
strategies and procedures about how and when to use AI techniques for 
energy management in smart buildings. Particularly, this paper is based 
on the ACODAT concept to organize the works derived from the Sys
tematic Literature Review. It is defined as a set of data analysis tasks that 
improve the process under study. These tasks interact with each other, 
and have different roles: (1) observe the process, (2) analyze and 
interpret what it is happening, and (3) make the decisions to improve it. 
The integration of tasks in a cycle, seen as a closed-loop, allows the 
autonomous resolution of system problems. The models stipulated for 
these tasks are based on AI techniques. Thus, the aim of this study is to 
provide a systematic review of the various AI approaches for BEMSs 
applications. The goal of our review is triple: 
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- First, to provide a comprehensive overview of the AI techniques used 
in BEMS problems, as well as the main specific applications to which 
these techniques have been applied.  

- Second, to propose a useful guide about how AI techniques have been 
used for monitoring, analyzing, and making decisions in an energy- 
building ecosystem. The work is organized from the standpoint of 
autonomic computation.  

- Finally, to present a systematic discussion about perspectives and 
future research paths from the point of view of the ACODAT concept. 
Thus, in addition to the definition of potential tasks for some of the 
phases required by autonomic computation (monitoring, analysis, 
etc.), preliminary autonomous cycles are also proposed. 

The remainder of this work is organized as follows. A preliminary 
background about BEMSs, smart grid technologies and the ACODAT 
concepts are described in Section 2. The Systematic Literature Review 
methodology is formulated in Section 3. The analysis of the literature 
found, organized according to the ACODAT concept, is reported in 
Section 4. Finally, a discussion about future directions in this domain is 
pointed out in Section 5. 

2. Background 

In this section, we provide the background for the Literature Review, 
in particular, we describe ACODAT, and smart buildings and energy 
terminology. 

2.1. Autonomic cycles of data analysis tasks 

The main objective of a data analysis task is to extract useful 
knowledge from data to allow decision-making based on it. In general, 
an ACODAT architecture can generate different models like descriptive, 
identification, and predictive models, among others, in order to guide 
the decision-making processes in a system. Thus, an ACODAT is a set of 
data analysis tasks that acts together, in order to achieve an objective in 
the process that they supervise [1,2]. The tasks have different roles in 
the cycle and interact with each other. The roles are observing the 
process, analyzing and interpreting what happens in it, for making de
cisions to reach the objective for which the autonomic cycle was 
designed. The integration of data analysis tasks in a closed-loop allows 
solving complex problems. The roles of the data analysis tasks are:  

• Monitoring: These tasks allow observing the supervised system. They 
must capture data and information about the behavior of the system 
from different sources, and prepare the data for the next steps: pre
processing, feature engineering, etc.  

• Analysis: These tasks must enable understand and interpret what is 
happening in the supervised system. Thus, during these tasks are 
defined knowledge models to understand the system.  

• Decision-making: These tasks define and implement the necessary 
actions based on the previous analysis, oriented to improve the su
pervised system. Once these tasks are completed, the process restarts 
with the monitoring and analysis tasks. 

The concept of ACODAT has been used in different domains. For 
instance, it has been used in Smart Classrooms [1,2], Smart cities [18], 
and industry 4.0 [19], among others. On the other hand, MIDANO 
(Methodology for the Development of Data Mining Application) is a 
methodology that guides the design and development of ACODAT ar
chitectures, and consists of three phases [20]:  

• Phase 1: This phase has the main goal of knowing the organization (e. 
g., mission, its strategic objectives, processes, members, etc.). Addi
tionally, this phase specifies the ACODAT for the problem to solve.  

• Phase 2: This phase prepares the data for the data analytics tasks. 
Thus, it defines the extraction and transformation operations of the 
data. It includes the definition of the Minable View (MV) with the 
useful variables for the autonomic cycles, and feature-engineering 
tasks for feature extraction, feature reduction, and feature selection.  

• Phase 3: This phase consists of the implementation of all the data 
analytics tasks of the autonomic cycle. Each task creates a knowledge 
model, for example, predictive or descriptive models. This phase also 
includes the implementation of the autonomic cycle. 

2.2. Smart buildings and energy aspects 

In general, energy consumption today is a global problem for society 
and the environment, as most of the energy is produced with combus
tion, requiring nonrecyclable materials and producing non desired 
greenhouse gas (GHG) emissions to the atmosphere. The problem brings 
attention from many initiatives globally, such as “Go green” [21], rec
ommendations like Low Carbon Transition Program in China [22] and 
Nearly Zero Building Strategy 2020 in Europe [23], and among others. 
Energy efficiency and conservation is required to sustain this trend and 

Fig. 1. Areas covered by the articles that present reviews about EMSs.  
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minimize the harmful effects. Another challenge is the expansion of the 
alternative sources of energy, like photovoltaic (PV) cells, wind turbine 
farms, geothermal installations, or tidal turbines, which require 
consolidating the coexistence with the traditional sources, like oil, coal, 
nuclear or hydraulic. Economic reasons also push agents to find ways for 
reducing the costs associated with consumption. For many years, energy 
strategies applied to the consumer side have been based on the auto
mation and optimization of control, such as the incorporation of 
Building Automation Systems (BAS) or Home Automation. Technology 
has provided a means to build a consistent concept to research and 
develop new lines to improve energy efficiency and reduce operating 
costs. 

Smart Energy is an interesting approach since addresses the prob
lems caused by power generation: (1) Green Energy deals with the 
protection of the environment; (2) Sustainable Energy is concerned with 
exhausting nonrecoverable materials; and (3) Renewable Energy seeks 
the interoperation of the new sources of energy with the existing sup
pliers. The Smart Energy research requires a delve knowledge in the 
fields of energy and Information and Communications Technologies 
(ICTs) to seize the wide opportunities brought by the digital trans
formation. In ICTs, the advances on the Internet, Ubiquitous Computing 
(UC), Big Data, Wireless Sensor Network (WSN), Service-Oriented Ar
chitecture (SOA) and microservices, allows the integration of new 
functionality in the EMS (BEMS, Home EMS (HEMS), etc.). The AI plays 
an important role in smart energy, approaching the different types of 
tasks: Monitoring, Analysis and Decision-making. The smart energy 
goals require to be counterbalanced with the improvement of the quality 
of life (QoL) and the quality of the services (QoS), thus being approached 
with a “smart environment”. Commonly studied “smart scenarios” are 
the “smart building”, “smart home”, “smart health”, and “smart city”, 
which could be considered either as one of these scenarios or as a 
cohesive set for them. 

Building systems consume 32% of the produced electricity [1], 
leading to strategies for optimization and adaptation to changes. The 
HVAC consumes above 33% of the electricity, lighting, 17,1% and IT 
equipment, 13.6% [1]. The Smart Building improves the quality of 
living, like users’ comfort, their security or the owner’s 
cost-effectiveness, by appropriate building and system designs and op
erations. The context information, such as weather forecasts, users’ 
behavior, or venue scheduling, enriches the accuracy and allows the 
implementation of automatic negotiation of energy tariffs public auc
tions. Comfort, energy and performance are opposite objectives that 
require optimization. Works on mid and long-term changes perception 
are required. In the seventies, Home Automation was conceived for 
remotely monitoring and controlling lighting, air conditioning, heating 
or appliances at home [1]. The smart home sector consumes 22% of the 
produced energy and due to inefficiencies 47% out of the total is lost. 
Today, both small and large residential faces new issues: (1) the heavy 
loads required for Plug-in Electric Vehicles (PEV); (2) the efficient se
lection of different traditional sources or buyers, Multi-Energy Systems 
(MES), and the onsite RES; and (3) the exploitation of huge amount of 
information that could make the models more precise. 

Distributed Energy Resources (DER) are rapidly expanding as users 
become prosumers, i.e. producers and consumers, capable of generating 
their own energy with PV cells and others, requiring HEMS or BEMS 
capable to switch over the optimal provider or the optimal buyer. DER is 
the proactive use of microgrids, rather than simply emergency systems. 
Several approaches are under investigation, as the interconnection with 
P2P Electricity Trading among users or the novel concept of the Energy 
Hubs, for provisioning turnkey solutions to the users. The emergence of 
Energy Storage Systems (ESS) improves efficiency but requires addi
tional functionality on the EMSs. One of the most interesting plans in the 
study on the consumer side is the exploitation of RES for loading EV, 
avoiding oversizing the grid to supply such loads in the peak hours, 
causing a significant cost reduction as well. 

From the viewpoint of the smart grid, the main drivers come from: 

(1) the population growth; (2) the new load demands; and (3) energy 
inefficiencies. The new load demands are characterized by the coexis
tence of traditional supply with RES and new applications, such as the 
PEV. The inefficiencies can be seen in today’s low Peak to Average 
Power Ratios (PAPR), which may cause demand-supply imbalance, 
blackouts and undesirable price variations. The smart grid is thus 
complex and difficult to design. New elements such as ESS, microgrids, 
EVs require the addition of capacity, but the onsite generation sources 
release part of it. Smart meters make the information more accurate, 
complicating the management but improving the optimization. 
Research approaches focus on capacity addition and shifting the load 
demand out of the peak hours, known as Peak Load Shaving. 

DSM approaches these problems (1) improving the energy efficiency 
or its conservation, like the application of the game theory for sched
uling; (2) the Demand Response Programs (DRPs) either responsive, by 
shifting, cutting or curtailing loads or nonresponsive; and (3) with onsite 
generation and storage backup [15]. DRPs can be achieved via in
centives like Direct Local Control (DLC) or demand bidding, or using 
price-based approaches like Real-Time Pricing (RTP), Time of Use 
(ToU), Inclined Block Rate (IBR), Critical Peak Pricing (CPP) or Day 
Ahead Pricing (DAP). 

3. Methodology 

In this section, the activities carried out for the revision of the 
literature are introduced. First, the methodology is defined, then, the 
research questions and search strategies are presented. Next, inclusion 
and exclusion criteria, and document selection, are explained. Finally, a 
summary of the selection process is detailed. 

The methodology used in this work is the systematic literature re
view (SLR), which divides the process into four phases [24]: (i) identi
fication of the need for revision, (ii) definition of a review protocol, (iii) 
conducting the review, and (iv) analysis of the review. In addition, the 
organization of the revision of the articles follows the workflow pro
posed for the ACODAT paradigm, which proposes three types of data 
analysis tasks (see sections 4 and 5): monitoring tasks, system analysis 
tasks, and decision-making tasks. Finally, the organization of the 
reviewed works inside these tasks is divided according to the feature 
engineering process (in the case of the monitoring tasks), or domain of 
application of the analysis or decision-making. 

The aim of the search process is to identify relevant studies according 
to research questions. The research questions are based on the objective 
of the article and are: 

Q1. What monitoring, analyzing and making-decision machine 
learning models for Energy Self-Management in Smart Buildings have 
been developed? 

Q2. What Energy Self-Management applications/tools/datasets for 
Smart Buildings exist? 

The rest of this section presents the details of the review protocol. 

3.1. Search strategy 

The following digital libraries have been explored: ScienceDirect, 
IEEE Xplorer, Google Scholar, Scopus, Elsevier and Springer databases. 
The inclusion criteria for the selection of publications are listed below:  

- Articles and book chapters from 2016 in English language, related to 
the research questions;  

- Articles and book chapters available in electronic form. 

On the other hand, there are two exclusion criteria to discard pub
lications that are not interesting for this work are:  

- Articles representing the personal opinions of individual experts, 
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- Articles in the form of conference posters, abstracts, short articles 
and unpublished works,  

- Articles whose approaches do not apply machine learning methods 
or techniques. 

Also, for the search process, the next group of terms in Table 1 has 
been defined using the PICOC method [24]. This method is used to 
describe the five elements in a search question. It is an acronym of 
Population (Who?), Intervention (What or How?), Comparison 
(Compared to what?), Outcome (What are you trying to accompli
sh/improve?) and Context (In what kind of organization/circum
stances?). In our case, we have used only Population, Intervention, 
Outcome and Context (see Table 2). 

Even when this work has been iterative, only the final results are 
presented. The search strings (Boolean research equations) to answer 
each research question are defined with the previous groups of key
words, as shown in Table 2. 

3.2. Selection process 

The search process follows the four stages proposed by Kitchenham 
[24]:  

- Selection by title and keywords: Selection of articles by evaluating their 
title and keywords, using the search strings.  

- Snowballing: inclusion of extra documents, based on checking the 
references of the previously selected documents. This process can be 
repeated as many times as new documents are found; however, only 
the first iteration was applied in this work. 

- Selection by abstract: Examination of the abstracts of candidate arti
cles from previous stages, using the inclusion and exclusion criteria, 
to define if they are selected to the next stage.  

- Selection by full text: Examination of the full text of the candidate 
papers from the previous stage, using the inclusion and exclusion 
criteria, for the final selection. 

3.3. Preliminary analysis 

At the end of the search process, 62 articles were selected matching 
the proposed research questions, as shown in Table 3. 

Fig. 2 shows the instantiation of the selection process to find the 
relevant works for this research. Initially, a total of 335 papers were 
recovered from the scientific libraries. After reviewing the title and 
keywords, and then removing duplicate elements, 169 papers were 
selected. In the snowballing stage, 32 articles were added. The review of 
the abstracts filtered the selection reducing the number to 141 papers. 

Finally, after reviewing the full text, 62 articles met all the eligibility 
criteria. 

The obtained articles are then organized according to the ACODAT 
concept, as depicted in Fig. 3. Fig. 3 shows the Monitoring tasks orga
nized in the next subgroups: data collection, feature engineering 
(extraction, reduction and selection), and detection and identification. 
On the other hand, the Analysis tasks are organized in the next sub
groups: prediction, classification, supervision, clustering and diagnostic 
models, while Decision-Making tasks are organized in control, optimi
zation and scheduling. Finally, there are some articles about 

Table 1 
Group of terms or keywords.  

PICOC  

P Autonomic Cycles 
P1 Monitoring OR Capturing OR Processing OR Treatment 
P2 Analyzing OR interpreting OR understanding 
P3 Making Decision OR performing OR executing OR planning 

I Machine Learning models 
I1 Detection OR determination 
I2 Optimization OR improving OR minimizing OR maximizing 
I3 Prediction OR forecasting 
I4 Prescription OR scheduling 
I5 Supervision OR Diagnostic OR Description OR Identification 

O Deployment 
O1 Data analysis tasks 
O2 Application OR tool OR dataset 

C Energies Problems 
C1 HVAC systems 
C2 Light 
C3 Smart Building OR Intelligent building 
C4 Energy Management OR BMS  

Table 2 
Research equations.  

Q1 (P1 OR P2 OR P3) AND (I1 OR I2 … OR I5) AND (C1 OR C2) AND C3 AND C4 
AND O1 

Q2 (C1 OR C2) AND C3 AND C4 AND O2  

Table 3 
Summary of articles selected for each research 
question.  

Question Result 

Q1 48 
Q2 14 
Total Articles 62  

Fig. 2. Selection process of articles for this SLR.  
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autonomous energy systems reported. 
According to Fig. 3, the first observation is that most of the articles 

are classified in optimization (16), control (8) and planning (8). In the 
field of analysis, the majority is in prediction, but there is not any study 
using online clustering strategies, for example, in diagnostic tasks. In 
features engineering, almost everything done is for feature extraction. 
Therefore, this classification reveals a number of research lines related 
to applications of specific AI techniques for solving problems in BEMS, 
such as online clustering and multilabel classification techniques, as 
well as their integration in autonomous cycles for autonomic energy 
management. 

4. Analysis of reviewed papers 

In this section, the articles are commented and classified according to 
the ACODAT approach. 

4.1. Monitoring 

Some studies on system monitoring and context data gathering tasks 
translate the technology achievements from other fields. Articles about 
Monitoring are divided into some activities required for the pre
processing of the data. The first subgroup links to the problem of data 
collection in smart buildings, like the smart sensors with smart meters at 
different levels (appliances, houses, buildings …), or sensor fusion to 
distinguish occupants’ activities. The advances in networked distributed 
elements and device consumption have led to the Internet of Energy 

(IoE) [9], which makes use of the Internet to share the information 
among devices to provide a distributed smart energy infrastructure. The 
next subgroup is about feature engineering, especially feature estima
tion, feature reduction or selection and feature extraction. The third 
subgroup is around the problem of detection or identification of 
variables/behaviors. 

In data collection, Farmani et al. [25] propose a Smart EMS archi
tecture with three modules. The first module, called the data acquisition 
module, senses different types of data (e.g. weather conditions), and 
receives the status of units of energy generating/consuming and the 
control signals. The data fuser module prepares the data, determining 
the outliers and miss-observed data, in order to replace them using the 
centroid of each class defined by a K-means clustering method. Finally, it 
combines several variables to compute new attributes based on their 
correlation to remove correlated features. 

In feature estimation, there are several works applied to the occupa
tion estimation in buildings. Zou et al. [26] propose a mechanism for 
occupancy detection and crowd-counting using Internet of Things (IoT) 
devices. Firstly, they design an IoT platform to obtain the channel state 
information (CSI), and use a wavelet-based denoising scheme to remove 
the inherent noise of the raw CSI data. Then, they propose a mechanism 
of occupancy detection based on the signal tendency index (STI) 
concept, and use a transfer kernel learning (TKL) approach to count the 
occupant number. For determining the location of the people inside the 
building in the context of energy management, Borhani et al. [27] design 
an indoor positioning system composed of the indoor information 
collection elements, and a radio map with online positioning, using the 

Fig. 3. Surveyed papers for Energy Self-Management in Smart Building.  
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Wi-Fi fingerprint embedded on smartphones. The indoor positioning 
system is composed of an offline section for collecting the radio map 
information. Then, the noise covariance of the received signals is 
determined by an adaptive Kalman filter. Also, it is composed of an 
online-offline section where positioning is conducted on a limited 
number of reference points with the highest clustering. 

At the level of feature reduction and selection, Rodriguez-Mier et al. 
[28] define a knowledge model based on the big data paradigm for the 
definition of a predictive model for smart buildings of energy con
sumption. Then they propose a multi-step prediction approach based on 
a hybrid genetic-fuzzy system, coupled with a feature subset selection 
method to automatically select the most relevant features in different 
time steps. Gonzalez-Vidal et al. [29] study multivariate time-dependent 
series from smart buildings for energy forecasting. Their methodology 
transforms the time series in a way that standard ML algorithms can 
process, and applies feature selection methods, such as multivariate and 
wrapper methods. They use Random Forest (RF), Instance-based 
Learning and Linear Regression algorithms. 

Other works have considered the definition of detection or identifi
cation models in the context of smart buildings. For example, Li et al. [30] 
propose a data mining-based method to identify and interpret the power 
consumption patterns and their associations. They perform data parti
tioning and interpretation with two descriptive data mining algorithms: 
clustering analysis that identifies three distinct patterns in energy con
sumption: (1) undercharged fault, (2) low and (3) high part-load ratios, 
and then discover the rules for energy consumption with rule association 
learning from each pattern. Fahim et al. [31] present a model to find 
abnormal energy consumption patterns by analyzing the temporal data 
streams gathered from smart meters by finding the gap between the 
current usage and the expected consumption, using a support vector 
regressor (SVR) to learn the energy consumption patterns. 

In the work of Förderer et al. [32] the authors describe DERs like 
surrogate models based on artificial neural networks (ANNs), which can 
learn a specific DER model with all the relevant constraints. The ANN 
can be used for different analyses, for example, to discover load profiles. 
Capozzoli et al. [33] use data from logs in EMSs to describe the energy 
consumption and anomalous energy patterns in buildings. In this paper, 
the authors use the Classification and Regression Tree (CART) technique 
for the detection task. Peña et al. [34] study the energy efficiency 
anomalies in smart buildings and propose a rule-based system based on 
the knowledge from energy efficiency experts to detect them. The 
rule-based system is used as a decision support system to detect anom
alies. Fig. 4 shows AI techniques used in the reviewed articles for 
monitoring tasks. It is observable that there is not any predominant 
technique over the other. 

4.2. Analysis 

This phase of ACODAT involves tasks that interpret, and understand 

what is happening in the supervised process. They are required to di
agnose, classify, predict or describe what is happening, or discover the 
pattern that characterizes events, among others. In the analysis tasks, 
the predominant approach is ML with classical models like Support 
Vector Machine (SVM), ANN, or their ensembles via Boosting or Bagging 
approaches, such as RF. Today, the attention of researchers goes to Deep 
Learning (DL) modeling, suggesting Convolutional Networks (CNN), 
recurrent Long-Short Term Memory networks (LSTM), or even Genera
tive Adversarial Networks (GAN) to mimic real systems. 

In the context of prediction works in smart buildings, Le et al. [35] use 
the Transfer Learning concept to develop a framework for multiple 
electric energy consumption forecasting of a smart building. In this 
framework, they first employ K-means for clustering many profiles of the 
daily load demand. Then, they train an LSTM model with the 
cluster-based strategy for MEC forecasting on smart buildings. Hadri 
et al. [36] develop several energy consumption-forecasting approaches 
by integrating the occupancy prediction and the context-driven control 
of building’s appliances. They test ARIMA, SARIMA, Extreme Gradient 
Boosting (XGB), RF, and LSTM. Moreno et al. [37] define predictive 
models of energy consumption and save energy for buildings based on 
the Radial Basis Function (RBF) technique. Another work of 
Gonzalez-Vidal et al. [38] propose ML and grey-box approaches to 
predict the energy consumption to test if the prior information on the 
physics of the building heat transfer is currently redundant because of 
the completeness of the system data. The grey-box uses the physics of the 
building heat transfer to estimate the energy consumption in a normal 
operation state, while the ML method combines statistics with SVR, RF 
and XGB. Aliberti et al. [39] discuss a methodology for short- and 
medium-term predictions of an indoor air temperature of a building 
using a Non-linear Autoregressive Neural Network (NAR) technique. 
The proposed predictive model can estimate the indoor air temperature 
in individual rooms with a prediction window of up to 3 h, and for the 
whole building with a prediction window of 4 h. Lawadi et al. [40] 
compare 36 ML algorithms to estimate the indoor temperature in a 
building, such as the Extreme Learning Machine (ELM), SVR, and 
Generalized Regression Neural Network (GRNN) algorithms. The algo
rithms were evaluated using different metrics like accuracy and 
robustness to weather changes. Zou et al. [41] define a deep 
learning-based human activity recognition scheme for smart buildings to 
identify human activities using only WiFi-enabled IoT devices. They 
collect CSI measurements from commercial IoT devices, and develop an 
Autoencoder Long-term Recurrent Convolutional Network (AE-LRCN) 
to eliminate the noise in the raw CSI data, extract the main features, and 
find out the temporal dependencies among data, for the human activity 
recognition problem. 

For classification problems in smart buildings, Siddiqui et al. [42] 
introduce a personalized appliance recommendation system based on 
Non-Intrusive Load Monitoring (NILM) that uses a DL approach to 
recommend consumption patterns for the appliances. The NILM 

Fig. 4. Summary of AI techniques in monitoring tasks.  
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algorithm is used to clean the noise of the data. Then, with a classifi
cation based on Term Frequency-Inverse Document Frequency (TF-IDF) 
they quantify and analyze the energy tags by assigning them weights. 
Once the data is classified, the recommended consumption patterns are 
generated for the appliances through the recommendation system. 

Fig. 5 shows the AI techniques used in the reviewed works for 
analysis tasks. The most used technique is LSTM. It is important to 
highlight that there are not diagnosis, supervision, recognition or clus
tering techniques, so common in other contexts, such as in Industry 4.0, 
and smart cities. 

4.3. Decision making 

ACODAT’s decision-making tasks may work in controlling a smart 
building, defining an optimization scheme or systems planning in smart 
buildings, among other things. In general, the decision-making tasks can 
be studied from different views: (1) the automation of management 
systems, known as Building Automation Systems (BAS); and (2) the 
energy efficiency in buildings and homes with BEMSs and HEMSs. These 
tasks can actuate on physically networked elements and solve problems 
with multiple optimization objectives. In this section, the reviewed 
works are grouped in these applications. 

4.3.1. Control schemes 
We will start with the works that propose control schemes for smart 

buildings. Ghadi et al. [43] investigate the use of fuzzy logic controllers 
in HVAC systems and light controllers for smart buildings in Australia. 
The paper highlights the development of intelligent control systems to 
improve the efficiency of control systems in buildings. Hao et al. [44] 
present a methodology to optimize the control of HVAC systems and 
minimize energy cost using a multi-agent RL algorithm. Each agent 
controls one central HVAC system in one of the buildings, and tends to 
maximize its profits within the power system constraints. Shaikh et al. 
[45] developed a multi-agent control system in combination with sto
chastic intelligent optimization for achieving a balance between energy 
consumption and wellbeing indoor environmental conditions. In addi
tion, the control system has also been embedded with an evolutionary 
multiobjective genetic algorithm (MOGA) for optimizing the energy 
management of the buildings. Anvari-Moghaddam et al. [46] defined an 
energy management system (EMS) for integrated homes/buildings in a 
microgrid system with various RESs and controllable loads. The EMS is 
based on a fault-tolerant ontology-driven multi-agent system, where the 
agents can be from simple-reflex to complex learning agents. They 
cooperate to define optimal energetic strategies, which consider the 
management of the distributed generation (DG) and demand response 
(DR). 

Gao et al. [47] propose a deep reinforcement learning (DRL) based 
framework for smart buildings based on thermal comfort control and 
energy optimization. They design a deep neural network (DNN) method 

with Bayesian regularization for predicting the occupants’ thermal 
comfort by considering different influencing factors. Then, they adopt a 
DRL approach for thermal control to minimize the overall cost by jointly 
considering the energy consumption of the HVAC system and the ther
mal comfort of the occupants. Ashabani et al. [48] design a real-time 
continuous and adaptive demand control strategy for buildings based 
on a three-phase multiobjective autonomous/automated load control 
approach, with regulation commands and autonomous grid ancillary 
services. 

Finally, AI also is present in adaptive controllers that actuate on the 
systems to compensate for unforeseen load changes, uncertain inertias, 
and any other disturbances for robustness. The adaptive controllers 
adjust their control parameters either 1) forcing the error between a 
reference model of the desired behavior and the current output to zero; 
or 2) forcing the error between the predicting output and the actual 
output. A good example of this advanced strategy is the LAMDA-based 
controller [49], which achieves the most appropriate operational state 
for the controller with fuzzy logic, providing a fast reaction to achieve 
the optimal state. Morales et al. [49] propose the application of LAMDA 
(Learning Algorithm for Multivariable Data Analysis) for advanced 
control in HVAC systems for buildings. LAMDA defines the control 
problem as a fuzzy classification approach. Thus, it determines the de
gree of adequacy for every class of a system and subsequently uses its 
similarity degree to identify the current functional state of the system. 
Additionally, an inference method has been added to LAMDA to 
compute a control action that brings the system to a zero-error state. 
Finally, Homod [50] considers a control algorithm that could handle the 
next properties of an HVAC system: large-scale nonlinear characteristics, 
large thermal inertia, time variability, nonlinear constraints, uncertain 
disturbance factors, and multivariate systems for both temperature and 
humidity by using hybridization layers between the physical parame
ters’ memory and the ANN’ weight, which is well-structured by the 
Takagi-Sugeno-Kang Fuzzy inference strategy. Fig. 6 shows the AI 
techniques used in the reviewed works for control tasks. Two of them 
combine these techniques with RL. 

4.3.2. Optimization models 
Different authors have proposed energy management algorithms for 

smart buildings that either integrate or not renewable energy. All these 
researches follow the same objective: the minimization of the daily en
ergy cost with the optimization of the comfort of occupants. Wahid et al. 
[51] propose a multi-objective optimization problem (MOOP) of maxi
mizing user comfort and minimizing energy consumption for residential 
buildings. The energy consumption of the temperature, illumination and 
air quality inside the building, is minimized, and the user comfort inside 
the building is maximized. They use three fuzzy controllers, one for each 
of the variables. The MOOP approach has been resolved with different 
multi-objective optimization techniques (artificial bee colony (ABC), ant 
colony optimization (ACO) algorithms, and Firefly algorithm (FA)). 

Fig. 5. Summary of AI techniques in analysis tasks.  
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Salehi et al. [52] propose an EMS of interconnected multi-energy hubs 
(MEH) that minimizes carbon emission and procurement costs. They use 
ε-constraint and max-min fuzzy decision-making techniques to reach a 
commitment among these contrary objectives. Wang et al. [53] propose 
a multi-objective optimization model for a BEMS in a building with a 
photovoltaic system integrated with other generation sources to opti
mize the overall cost of the building system and occupants’ indoor 
environmental comforts at the same time, under ToU and price-based 
DR. Si et al. [54] evaluate algorithms used for building 
energy-efficient design optimization. They use a set of performance 
indices to evaluate the performance of the algorithms, which are sta
bility, robustness, validity, speed, coverage, and locality. Hookee-Jeeves 
algorithm, Multi-Objective Genetic Algorithm II, and Multi-Objective 
Particle Swarm Optimization algorithm (MOPSO) are evaluated. 

The aim of the work of Delgarm et al. [55] is to define a 
simulation-based multi-objective optimization for building energy effi
ciency and indoor thermal comfort to find the optimal solutions of the 
comfort-energy efficient configurations of the building. They propose an 
optimization method that combines a multi-objective artificial bee col
ony (MOABC) optimization algorithm with an EnergyPlus building en
ergy simulation tool. Ullah et al. [56] propose EMSs for homes/buildings 
based on the Moth-Flame Optimization (MFO) and Genetic Algorithms 
(GA). The EMSs must minimize the energy cost and Peak to Average 
Power Ratio (PAPR), and maximize end-user comfort. Braun et al. [57] 
present the optimization of appliances as well as heating and 
air-conditioning devices in two distinct settings of smart buildings, a 
residential and a commercial building. In both scenarios, the operation 
times and operation modes of household appliances as well as HVAC 
devices are optimized with respect to the minimization of energy costs, 
CO2 emissions, and technical wearout as well as to the maximization of 
comfort, i.e., minimization of discomfort. They compare four 
state-of-the-art algorithms in realistic simulations: NSGA-II, NSGA-III, 
and SPEA2. Du and Li [58] define an EMS for a smart multi-microgrid 
(MMG) that combines two techniques, the DL and the RL methods. 
The set of microgrids are connected to the main distribution system to 
purchase energy to maintain local consumption. The goal is to decrease 
the demand-side PAPR, and to maximize the profit from selling energy. 

Many studies use Life Cycle Assessment (LCA) methodology in order 
to assess the environmental impacts of buildings. Because of the sig
nificant resources to analyze all possible scenarios in an LCA study, 
computational optimization techniques are utilized. Harmathy et al. 
[59] propose an approach for the overall energy performance 
improvement of office buildings. They formulate an optimized building 
envelope model using a multi-criterion optimization approach, which 
determines efficient window to wall ratio (WWR) and window geometry 
considering indoor illumination quality, and then, assess the glazing 
parameters influence on the annual energy demand. The objective of the 
research of Bre et al. [60] is to optimize the energy and thermal per
formance of residential buildings, based on an objective function 

defined as the weighted sum of both performances in the home. Also, 
they performed a sensitivity analysis to determine the effect of the 
design variables on the objective function. Finally, they solved this 
optimization problem using GA. Azari et al. [61] use a multi-objective 
optimization algorithm to find an optimum building envelope design 
considering the energy use and the life cycle contribution to the impacts 
on the environment in an office building. They consider several aspects 
for the design, such as window type, window frame material, glazing 
type, wall thermal resistance, insulation material, and south and north 
WWR. The results of LCA are used in a hybrid ANN and GA-based 
approach as the optimization technique to identify the optimum 
design combination. 

The paper of Liu et al. [62] is focused on energy trading in the ‘dis
tribution network market’, where there are a number of participants 
known as aggregators. The aggregators have contracts with distributed 
resource owners who choose their aggregators. They use a dynamic 
pricing methodology for decentralized energy trading to optimize the 
financial benefits of the distributed energy resource owners. In this 
paper, a Java Agent Development Framework (JADE)-based multi-agent 
system is applied to model the participants. Chen et al. [63] propose a 
prediction-integration strategy optimization (PISO) model to enable 
interactions among prosumers in distribution grids. Their market pre
diction model is based on the ELM technique, and learns the relation
ships between prosumer bidding actions and market responses. This 
model can be used in a continuous double auction (CDA) market to 
facilitate prosumers’ participation. Ma et al. [64] propose the concept of 
Smart Building Cluster (SBC), and define a multi-party EMS for SBC 
based on the non-cooperative game theory. In this context, all partici
pating SBCs are viewed as players in the game. The EMS considers 
building-integrated PV systems and automatic demand response (ADR). 
Finally, the Nash equilibrium in the model is determined by a MOOP. 

In recent years, there is interest in using RES, but due to the high 
uncertain of these resources in power systems, continuity and stability 
have become a big problem. Roukerd et al. [65] describe an index for 
availability assessment considering the maximum available capacity 
and the reaction time of generating units. Particularly, in a smart grid 
environment, virtual demand response resources (DRRs) are used for 
solving the uncertainty problems of renewable energy resources. They 
model the uncertainty of DRRs using the Z number approach, which is a 
possibilistic-probabilistic method. The uncertainty of supply-side re
sources is also considered in their approach to determine the optimum 
index of availability, with a minimal total operation cost. Finally, Kim 
and Lim [66] consider an EMS for a smart energy building connected to 
an external grid as well as distributed energy resources including a RES, 
ESS, and vehicle-to-grid station. First, the EMS is modeled using a 
Markov decision process. Subsequently, an RL-based energy manage
ment algorithm is proposed to reduce the operational energy costs of the 
target smart energy building under unknown future information. Fig. 7 
shows the AI techniques used in the reviewed works for optimization 

Fig. 6. Summary of AI techniques in control tasks.  
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tasks. The main used techniques are the multi-objective approaches, 
some of them based on EA. 

4.3.3. Scheduling models 
Ullah et al. [67] describe a mechanism to schedule the load units to 

achieve three objectives: minimization of the consumed energy cost, 
peak-to-average power ratio, and consumer waiting time due to 
schedule load. To achieve the previous objectives in the industry, they 
analyze two bio-inspired heuristic techniques: 
Grasshopper-Optimization Algorithm and Cuckoo Search Optimization 
Algorithm (CSOA). Rasheed et al. [68] propose a control system to 
minimize energy cost, user discomfort, and peak load demand, for res
idential load management under a real-time pricing environment. The 
proposal is based on a multi-agent-based multi-layered hierarchical and 
the idea that these incompatible goals can be achieved with a load 
scheduling using a real-time information exchange among users. 
Chouikhi et al. [69] introduce two EMSs in smart buildings using 
multi-agent systems and game theory. They optimize the energy demand 
cost using a distributed energy demand scheduling approach and model 
the interactions between the providers and consumers based on the 
multi-leader-follower game theory. 

The work of Liu et al. [70] present an energy-scheduling scheme for 
an IoT-based EMS. They design two types of scheduling methods to 
schedule the devices based on a DRL algorithm: an edge and a cooper
ative method. In the first method, the edge server executes the 
energy-scheduling task, which uses the DRL algorithm. In the second 
method, the DL training is carried out in the cloud server, and the edge 
server adopts the solution calculated by the cloud server. In another 
research, Mocanu et al. [71] explore in the smart grid context the ben
efits of using DRL to perform online optimization of schedules for BEMs. 
Particularly, they explore two DRL methods, Deep Q-learning and Deep 
Policy Gradient. Ye et al. [72] propose a real-time autonomous energy 
management strategy for a residential Multi-energy system using a 
model-free DRL-based approach to optimally schedule the usage of 
different devices with the aim of minimizing end-users’ energy costs. 
Baniasadi et al. [73] describe an integrated HEMS for smart residential 
buildings to manage different resources based on ToU pricing tariff, in 
order to minimize the operation cost and reduce the mismatch between 
generation and load demand. They use a colonial competitive algorithm 
(CCA) to minimize the operation cost, which is an evolutionary opti
mization algorithm that is inspired by imperialistic competition. 

Aslam et al. [74] propose a DSM approach for residential consumers 
to tackle the home appliances’ scheduling problem, which is based on 
meta-heuristic techniques. Hence, they propose an efficient HEM 
scheme in a BEMS using GA, the CSOA and a Crow Search Algorithm, 
which are used for electricity cost and peak load improvements with a 
minimum user waiting time. Jabarullah et al. [75] describe a scheduling 
approach for energy hubs using the artificial bee colony algorithm, to 
determine the optimum short-term scheduling for small- and 

medium-scale demands. The energy hubs must manage the controllable 
loads, and provide electrical, cooling and thermal demands. Fig. 8 shows 
the AI techniques used in the reviewed works for optimization tasks. The 
main used techniques are the bio-inspired approaches, and the other two 
techniques used are DRL and multi-agent approaches. 

4.4. General autonomic energy management architecture 

In this section, several works are described that present a general 
architecture of an EMS in a smart grid, which eventually consider 
models based on agents, or concepts of the autonomous computing area 
or middleware, among others. In general, AI allows the conception of 
Intelligent Agents that implement autonomous tasks, as shown in the 
architecture of ACODAT [2,3] that becomes autonomous following the 
four dimensions of IBM’s MAPE-K [76]: 1) self-configuration, 2) 
self-healing, 3) self-optimization and 4) self-protection. AI addresses the 
integration of the management systems, either horizontally extending 
the supervision to smart building clusters, smart districts or smart cities, 
or vertically following any hierarchy implementation, like ISA-95 
Standard. One of the works about energy devices is the research [77], 
which defines an ‘adaptable smart thermostat’ for residential energy 
management, utilizing fuzzy logic and wireless sensors capabilities, in 
order to avoid that residential customers must manually re-program 
their thermostats in response to dynamic electricity prices or environ
mental conditions that vary over time. The thermostats must autono
mously learn and adapt to users’ schedule and preference changes in 
order to save energy. Also, the results of Poorvaezi et al. [78] indicate 
that the uncertain supply-side resources cause to decrease in the flexi
bility level under the smart grid environment. In this paper, they define a 
new formulation of flexibility-based unit commitment associated with 
demand response resources, where the uncertainty of DRRs is modeled 
using the Z number, which is a possibilistic method, with a Monte Carlo 
procedure. 

Linked to multi-agent systems, some papers close to this domain are 
described next. In the work of El-Baz and Tzscheutschler [79], a 
double-sided auction mechanism is presented for the smart microgrids, 
where in-house energy supply and demand devices are participating to 
maximize economic benefit, and microgrid autonomy. The proposed 
solution is a micro-market based on a double-sided decentralized bid
ding auction where prosumers can participate either as producers or 
consumers in a microgrid depending on their energy need within a 
discrete-time interval. Monacchi et al. [80] study the use of forward 
contracts in the context of smart grid. These contracts are based on 
service-level agreements, such that the prices are defined according to 
the future supply and demand curves. They develop a learning broker 
based on ANN to determine the future supply and demand curves, and 
an energy broker that formulates prices based on these future supply and 
demand curves. Huang et al. [81] present an EMS for smart buildings 
with hybrid power grids based on real-time and distributed energy data 

Fig. 7. Summary of AI techniques in optimization tasks.  
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collection and analysis. The EMS uses an uncertainty-aware minority 
game approach to extract and classify energy signatures of rooms. Then, 
they define a demand-response management system to minimize peak 
demand and to distribute solar energy based on a multi-agent approach. 

Smart grid modeling as an autonomous process, eventually with 
emergent and self-organized characteristics, has also been the object of 
study [82]. Muralidharan et al. [83] propose a model of a self-governing 
system for smart objects that autonomously share power without a 
central controller. The decentralized power distribution (DPD) method 
distributes the available power among the appliances of the system ac
cording to their priorities. Aguilar et al. [84] propose a self-managing 
architecture for multi-HVAC systems in buildings, based on the ACO
DAT concept. This approach is used for improving energy consumption, 
as well as to maintain indoor comfort, and maximize equipment per
formance, by means of identifying and selecting a possible multi-HVAC 
system operational mode. This architecture is based on a set of data 
analysis tasks that use the data gathered from the system and the envi
ronment to define an autonomic management approach for multi-HVAC 
systems. Aguilar et al. [85] propose an ACODAT for the supervision of 
the building’s HVAC systems. The supervisory approach of the HVAC 
system can detect deviations, such as faults or gradual increment of 
energy consumption. 

The work of Schachinger et al. [86] aims at developing an 
ontology-based abstraction layer that integrates all relevant concepts for 
Smart grid interaction in order to provide homogeneous knowledge 
representation for BEMSs. Based on the ontology, a BEMS is able to gain 
knowledge of both dynamic and static characteristics of the ambient 
smart grid. Sayah et al. [87] aim at proposing a semantic framework for 
saving energy in smart cities. They propose an autonomous architecture 
based on ontologies, Big Data, and Multi-Agent Systems to reduce en
ergy consumption in smart cities. 

The energy-aware management of smart environments is a chal
lenger. Following this direction, De Paola et al. [88] define a hybrid 
intelligent system for smart buildings based on a fog-based architecture, 
in order to achieve energy efficiency. This proposal combines reactive 
intelligence, in the edge devices, for a quick adaptation; and deliberative 
intelligence, for more complex tasks (e.g., optimization, learning) on the 
cloud. Reactive intelligence is implemented by a fuzzy controller that 
acts in response to current conditions by automatically choosing the 
actions the actuators must perform. The deliberative component opti
mizes the behavior of the reactive intelligence finding the best trade-off 
between meeting the user’s preferences and minimizing energy con
sumption. Fotopoulou et al. [89] propose an energy-aware IT ecosystem 
for energy efficiency in a building based on the energy consumption 
behavioral changes of the occupants. This ecosystem personalizes en
ergy management to lead to occupants’ behavioral change towards ac
tions with a positive impact on energy consumption. The energy-aware 
IT ecosystem is based on the IoT, semantic web, rule-based recom
mendations, and data mining technologies. They define a 

recommendation system to suggest personalized actions that lead to 
behavioral changes to improve energy efficiency. Fig. 9 shows the AI 
techniques used in the reviewed works for autonomous EMS. The main 
used techniques are the multi-agent and autonomic approaches. 

5. Challenges 

From the ACODAT perspective, research challenges on BEMSs found 
in recent literature respond to three categories: Monitoring and feature 
engineering of the system and contextual information, including the 
occupants’ behaviors; Data analysis for knowledge discovery; and 
advanced control and supervision for decision-making. In the rest of this 
section, some specific challenges will be grouped in different ways. 

5.1. Monitoring 

The heterogeneous data coming from sensors is the first problem 
faced in monitoring the building. Also, it is necessary to find ways to 
improve the data quality, which will be delivered to the rest of the 
services and applications. The IoT and smart meter concepts extend the 
opportunities for getting better and more accurate knowledge, but add 
new necessities like Big Data architectures to manage the massive 
amount of data, or the feature engineering to extract, select and fuse the 
data. Some specific challenges are: 

• Develop a real-time semantic feature engineering process for diag
nostic or predictive models for smart buildings.  

• Propose an optimal sensor location method for smart building, which 
operates in IoT environments, for efficient energy management. It 
must guarantee the diagnosticability of the Smart building. 

• Develop a decentralized smart monitoring system for EMSs consid
ering feature-engineering processes.  

• Define a non-intrusive occupant detection system for smart buildings 
considering contextual information like the occupant consumption 
profile or the concentration level of indoor CO2 or the audio, or with 
load forecasting approaches like occupancy prediction, for a robust 
estimation of building occupancy. 

5.2. Analysis 

The second category of challenges is related to the analysis of the 
data obtained from the monitoring stage. AI techniques can be used for 
modeling or understanding situations [90]. For instance, they can define 
models for predicting consumption, for diagnosing a situation, or for 
determining occupants’ use, among other things. In this section, the 
challenges are grouped into classic ML (supervised, unsupervised and 
RL) techniques for specific problems, for smart-based BEMSs. 

A. Supervised and Unsupervised Machine Learning Techniques. 
Advances in the area of ML can be used to attack specific problems in 

Fig. 8. Summary of AI techniques in scheduling tasks.  
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BEMSs. These latest advances refer to multi-labeling strategies, co- 
clustering approaches, semi-supervised learning strategies, among 
others. Let’s look at some of those possible applications. There are 
several services required in a BEMS, which can be solved with ML 
techniques:  

• Energy load prediction,  
• Classification of the consumers (for example, according to social- 

demographic information), 
• Load profiling using clustering based on consumer energy con

sumption behavior,  
• Anomaly/theft detection, 
• Estimation of the energy consumption for a Home/Apartment, de

vices, etc. 

For some of the services proposed above, develop semi-supervised 
approaches (e.g. based on LAMDA) or automatic feature engineering 
processes are required. 

Other more complex problems are:  

- Find abnormal energy consumption patterns by analyzing temporal 
data streams.  

- Predict the situations of conflict in a smart grid or a microgrid of a 
smart building, which can impact the energy efficiency  

- Develop forecast approaches using boosting or bagging or stacking 
schemes for smart building contexts.  

- Define opportunistic dynamic Predictive Models for residential and 
commercial smart buildings, which consider noise or missing data 
scenarios.  

- Formulate surrogate models to represent the device behaviors, which 
consider all relevant constraints. The same idea can be used for the 
tariff generation patterns, which infer a price signal from a given 
load profile  

- Define temporal energy patterns (e.g., energy usage patterns of lights 
and air conditions) based on time series and temporal logic.  

- Develop a multivariate time series feature selection methodology for 
predicting energy behavior (consumption, etc.) in smart buildings to 
minimize several metrics like Root-Mean-Square Error (RMSE) and 
Mean Absolute Error (MAE) and the number of attributes. 

- Formulate forecasting models (energy consumption, indoor tem
perature) in smart buildings using incremental learning, interactive 
learning (with real-time user feedback about comfort levels) and TKL 
approaches.  

- Develop approaches to build patterns considering the uncertainty 
and imprecision using approaches like fuzzy logic and Z-numbers.  

- Formulate hybrid prediction models of energy consumption, mixing 
information about the physics of the buildings (e.g., the heat transfer 
process), with the available current data in real-time.  

- Formulate approaches to determine thermal comfort using novel 
metrics like metabolism rate, considering three aspects of the indoor 
environment: visual, thermal, and indoor air quality comfort. 

- Develop diagnostic models using multilabel/multi-clusters ap
proaches. The approaches must consider the feature-engineering 
problem in an autonomous way. 

B. Reinforcement Learning for Intelligence-based Management 
Systems. 

A currently widely used learning technique, because a system can 
learn from experience, is RL. This particular technique has many po
tential uses in the field of BEMS, for example:  

- Define a multi-agent RL based on a DRL approach for the building 
energy consumption-scheduling problem in a smart building.  

- Develop a real-time autonomous EMS using DRL or RL approaches to 
determine the real-time autonomous control strategies.  

- Formulate multi-agent RL algorithms to control the components of a 
microgrid (e.g., a multi-HVAC).  

- Define a smart household appliance usage strategy that allows real- 
time scheduling based on the reduction or shift of the energy de
mand during peak periods.  

- Formulate a BEMS that considers the exploration of the continuous 
space of the possible actions-states map of an RL using DL or LAMDA 
techniques, and uncertainty about the behavior of certain variables 
using Z numbers. 

5.3. Management and decision making 

Research on optimization is key for the decision-making category 
due to the multiple and opposite objectives, or the number of objectives 
in different areas of design and operations. The automation of the 
management system itself is also a research trend that includes auton
omous scheduling, smart control, among other things. Also, flexible 
architectures are required based on distributed AI approaches like multi- 
agent systems. These enable a comprehensive modeling for smart 
buildings, smart building districts or their integration in smart cities. 
The abstraction provided by this approach allows the implementation of 
robust, energy-efficient and cost-effective distributed decision-making 
processes. This section can be broken down in AI-based EMSs, intelli
gent control systems, optimization problems, scheduling problems, and 
multi-agent systems and autonomous processes for EMSs. 

A. Artificial Intelligence-based EMSs. 
With regards to the EMSs for smart buildings, a set of systems/con

cepts are currently being developed in order to allow their maximum 
efficiency with the minimum cost and greater comfort of their occu
pants. In this sense, concepts such as smart grid, microgrid, DSM, energy 
hub, IoE, among others, have been appearing. Next, we name some 
challenges regarding the use of AI in their conceptions. 

Fig. 9. Summary of AI techniques in autonomous EMS.  
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- Develop a distributed smart EMS based on the cooperative/federate 
ML principle for the energy management of smart buildings in smart 
grids. This scheme can be enriched with a multi-agent system model 
and a distributed feature engineering process. 

- Develop a Smart DSM to balance the supply and demand of elec
tricity by shifting energy consumption from unfavorable to favorable 
time slots.  

- Formulate a Prosumer Agent that can optimally manage producers 
and storage devices, and in addition, determine when must generate 
and consume energy. 

- Define an adaptive demand-side approach that allows shifting elec
trical loads generated by different sources (e.g. heat pumps, photo
voltaic panels), but also, schedules multiple appliances.  

- Propose a Smart EMS architecture for the scheduling process based 
on a real-time feature engineering process.  

- Develop a Smart Hybrid DR profile that includes load shifting and 
load curtailing, among other strategies.  

- Define a Dynamic Pricing Scheme with AI techniques to manage 
DERs while keeping the energy balance and the global optimization 
in a cluster of micro-grids.  

- Formulate a real-life distributed DR system based on multi-agent 
systems for a large number of building devices that are under the 
control of different entities/parties who may have their own interests 
and objectives.  

- Define virtual smart meters with the ability to merge data from 
different sensors, doing descriptor engineering processes, among 
other things  

- Formulate a DRL approach for optimizing a DSM approach for a 
distribution system operator (DSO) in an intelligent multi-microgrid 
(MMG) energy management context. 

B. Intelligent Control Systems. 
In a domain where there is currently much interest, it is in the 

development of intelligent control systems, which allow better use of the 
energy platforms of smart buildings. In this context there are several 
challenges:  

- Develop dynamic controls based on RL methods. In this context, 
several approaches can be defined, like DRL, online RL, or RF with 
reward signals, to consider the dynamic and incertitude of the 
context. 

- Define adaptive and distributed control schemes for buildings inte
grated into smart energy systems, which consider the adaptive 
models and comfort bands for the different seasons and user 
behaviors.  

- Formulate a smart distributed control approach for the different 
subsystems in a building like the LED Lighting System, HVAC system, 
etc. 

C. Optimization Problems. 
In the optimization context, the new energetic systems pose a sig

nificant number of optimization problems of different natures. Thus, 
multi-objective, many-objective, or dynamic optimization strategies, 
among others, are very useful in this context. Here are some of those 
challenges.  

- Define a dynamic optimization approach of cross-linked microgrids 
considering different objectives.  

- Formulate an energy management framework for achieving optimal 
operations of smart building clusters (SBC) using a multi-objective 
optimization approach by cluster, and intra-clusters one based on 
the Nash equilibrium strategy.  

- Develop an EMS of interconnected multi-energy hubs (MEH) aimed 
at minimizing the procurement costs as well as reducing carbon 
emission using multi-objective approaches. 

- Define an optimal energy management of interconnected smart res
idential buildings (multi-smart apartment buildings) considering 
energy flow among them. 

- Develop a multi-objective multi-agent framework for the manage
ment of the bidirectional energy trading capabilities of an EV fleet 
arriving at a region of academic/office building.  

- Define a re-configuration approach of EMS like a MOOP that allows 
the inclusion of new devices, advanced maintenance, among other 
things.  

- Formulate an optimized building envelope model using a multi- 
criterion optimization approach to determine the overall energy 
performance of buildings, in order to help architects and engineers in 
the early-design stages of new projects.  

- Develop a joint dynamic optimization of the load scheduling, energy 
storage control and indoor comfort management in a smart building. 
The objectives to be considered are: electrical and thermal load 
scheduling delay minimization; energy procurement cost minimiza
tion from controllable generators and external grid; electrical and 
thermal energy storage degradation minimization; and indoor user 
comfort maximization.  

- Define a distributed interdependent many-optimization strategy in 
multiple buildings in a microgrid, which considers the uncertainty of 
the data and forecasting of the data required.  

- Develop a real-time optimization approach for an EMS that considers 
many-objectives, and the uncertainty about the behavior of certain 
variables using Z numbers and ML models.  

- Develop a real-time optimization approach for an EMS based on Z 
numbers and ML models that considers many-objectives and the 
uncertainty of variables.  

- Optimize the consumption of the components of the system (sensors 
and actuators), by considering the maximization of the system life
time of the different components of the system. 

D. Scheduling Problems. 
Another very relevant area of decision-making is about the sched

uling problems in the context of BEMSs, for example, to schedule the 
utilization of energy resources, of the appliances in a home/apartment. 
There is a diversity of scheduling problems in BEMSs where intelligent 
scheduling strategies using AI techniques can be used.  

- Define a dynamic multi-objective scheduling scheme for smart 
buildings in the incertitude context of EMSs.  

- Define a distribute device scheduling for buildings considering the 
as-scheduling, availability of resources, etc.  

- Define a metalearning approach to select the suitable smart HEMS 
optimization technique to schedule the home appliances consump
tion so that the overall energy consumption be minimized.  

- Develop a smart scheduling approach that considers economic- 
environmental constraints, prosumers, user living patterns, energy 
storage (like a battery), waiting time of home appliances.  

- Define a distributed BEMS to optimize energy consumption.  
- Define a hierarchical DRL method for the scheduling of energy 

consumptions of smart buildings. 
- Carry out planning/scheduling schemes that incorporate mainte

nance tasks in the energy infrastructure. 

E. Multi-Agent Systems. 
Multi-Agent Systems have been used to model distributed systems to 

describe complex behaviors such as distributed control tasks, conflict 
resolution, among others. Also, it is a base model to allow emergent 
behaviors in the system. In the context of BEMSs, some possible chal
lenges are:  

- Formulate a decentralized approach for negotiation and conflict 
resolution in the context of smart grids. 
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- Develop smart devices (e.g. an ‘adaptable smart thermostat’) like 
agents, which can carry out its energy management.  

- Develop a continuous double auction-based and bilateral contract- 
based P2P electricity trading mechanism, for properly managing 
electricity trading among prosumers.  

- Develop trust models for P2P electricity trading.  
- Define a distributed auction mechanism for multi-energy scheduling 

in an energy hub that serves several building energy users.  
- Formulate a smart management of a microgrid community composed 

by local energy management system (LEMS) for optimal planning,  
- Develop a demand bidding and emergent DRM program mechanism 

emergent theory.  
- Formulate a multi-agent building control system based on bio- 

inspired optimization approaches (e.g., particle swarm, ACO, etc.) 
to achieve the smart building control goal.  

- Define an EMS based on a distributed uncertainty-aware approach 
for energy resource allocation.  

- Develop a multilevel decision system for EDM for Smart Buildings 
based on multi-agent concepts. 

- Develop a multi-agent RL algorithm that schedules the energy con
sumption of multiple smart homes/apartments with distributed en
ergy resources, energy storage systems and controllable home 
appliances (like air conditioners or washing machines).  

- Define a distributed load scheduling mechanism using multi-agent 
systems and uncertain theory to manage dynamically the uncer
tainty in the price.  

- Define a self-governing system of smart objects that autonomously 
share power without a central controller based on a decentralized 
power distribution (DPD) method based on multi-agent systems that 
distribute the available power among the appliances according to 
their priorities. 

F. Autonomous Processes. 
The concept of ACODAT seeks to integrate various AI techniques for 

the autonomous management of processes. In this sense, there are many 
possible applications in the context of BEMS. Below, some of them: 

- Develop an ACODAT like a metalearning approach to build fore
casting/diagnostic models for a BEMS,  

- Define a diagnostic approach of energy consumption in devices (e.g., 
HVAC systems) using an ACODAT of two steps: a clustering phase to 
define the power consumption pattern and an association rules phase 
to interpret the power consumption pattern.  

- Propose an autonomous DL framework for an IoT platform of BEMSs 
like an ACODAT to reveal the temporal dependencies among the 
time series data.  

- Formulate a recommendation system about the appliance utilization 
in a BEMS using ACODAT with a DL approach that determines the 
appliance behavior, and a classification approach to analyze the 
energy tags.  

- Develop an IoT-based Energy Management Semantic Model based on 
the concepts like Linked Data Analytics Ontology and Emergent 
Ontologies.  

- Define an EMS based on ACODAT for a smart grid composed of 
micro-grids to optimize energy dispatch.  

- Propose an energy-aware management for multi-building scenarios 
based on ACODAT that exploits a fog-based architecture  

- Formulate an ACODAT system for Electric Energy Consumption 
forecasting in a smart building: A first task groups the daily load 
demand of many profiles (a time series clustering module). The next 
task is a training algorithm that utilizes the cluster to learn the 
forecasting models (e.g., LSTM models).  

- Define an occupancy management system for smart buildings based 
on the ACODAT concept: The first task carries out the Occupancy 
Detection; the next task carries out an Occupancy Counting. Then, 
the third task carried out an Occupancy Tracking (e.g., use the well- 

known user localization algorithms), and finally, the last task carried 
out an Occupancy Event/Behavior Recognition:  

- Develop a hybrid occupant detection system for the detection of 
anomaly electricity consumption profiles in a building using the 
ACODAT concept. The first task is a prediction scheme of the load- 
buildings (e.g., at the plug-level like desktop computers, laptops, 
printers and copiers), and the second is a real-time (online) clus
tering approach to detect the anomaly.  

- Formulate an autonomous feature engineering process for energy 
data. It can be coupled to automatically select the more relevant 
features for different contexts like Fuzzy Rule Learning approaches.  

- Propose a flexible autonomous energy trading pool for the P2P using 
interaction protocol of multi-agent systems.  

- Proposes a generic framework to manage the energy in a community 
of flexible Smart-Buildings where participants collectively optimize 
any generic objective, such as grid services or promoting local RES 
energy consumption. For that, collective consensus (social set points) 
is required.  

- Model the auction-based P2P electricity trading mechanism among 
prosumers using multi-agent systems. 

A resume of these challenges is shown in Table 4. 

Disclaimer 

The content of this publication does not reflect the official opinion of 
the European Union. Responsibility for the information and views 
expressed herein lies entirely with the author(s). 

Declaration of competing interest 

The authors declare that they have no known competing financial 

Table 4 
Summarization of the mains challenges.  

Challenges 

Monitoring  
• A Real-time semantic feature selection approaches for energy Estimation, Detection 

and Diagnosis problems in Smart building.  
• An Optimal sensor location method.  
• An Occupant detection system. 
Analysis  
• Semi-supervised approaches for classification of the consumers, load profiling, 

anomaly/theft detection, etc.  
• Multivariate time series feature selection approaches for predicting energy 

behavior.  
• Opportunistic (missing information) time (online learning) approaches for 

diagnostic (multilabel/multi-clusters) and prediction tasks in Smart Grid, Micro- 
Grid, and Multiple Energy Systems.  

• Unsupervised approaches for temporal energy pattern characterization, Fault 
Detection and Diagnosis for buildings. 

Management and decision-making  
• Adaptive, dynamic and distributed control schemes for HVAC, LED Lighting and 

other Systems in Smart Buildings.  
• Smart real-time energy consumption scheduling (e.g. multi-agent RL based or DRL 

data-driven approaches).  
• Dynamic many-optimization approaches for energy management in smart 

buildings.  
• Scheduling schemes that incorporate maintenance tasks in the energy 

infrastructure. 
Management: Multi-Agent Systems  
• A Prosumer Agent.  
• A Microgrid Agent.  
• A Smart grid Agent.  
• A Virtual smart meters.  
• A decentralized approach for the negotiation and conflict resolution in the context 

of ES (e.g., auction, bidding and emergent mechanisms from multi-agent systems). 
Management: Autonomous Processes  
• Smart building energy management systems.  
• A Generalized Automated Demand Response.  
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